1. Comparing the averages of more than two groups

Remember that we use t-test for comparing two averages. But this cannot be applied to more than two averages.→ANOVA

Step1 set up H_0 and H_1

H₀: There is no difference among coffee A, coffee B and coffee C.

 H_1 : There is a difference either between coffee A and coffee B, coffee A and coffee C, and coffee B and coffee C.

Step2 determine the significance level This time, let's set p < .05

Step3 Conduct an analysis We use **aov** (analysis of variance) function.

> coffee3=read.delim("clipboard",header=T)

> boxplot(coffee3\$Score~coffee3\$CoffeeType)

> aov(coffee3\$Score~coffee3\$CoffeeType)

Call:

```
aov(formula = coffee3$Score ~ coffee3$CoffeeType)
Terms:
```

	coffee3\$CoffeeType	e Residuals	8
Sum of Squares	552.4667	1018.200	0
Deg. of Freedom		2	27

Residual standard error: 6.140937

Estimated effects may be unbalanced

#This is difficult to interpret. So use the following command:
> summary(aov(coffee3\$Score~coffee3\$CoffeeType))

 Df
 Sum Sq Mean Sq F value
 Pr(>F)

 coffee3\$CoffeeType
 2
 552.47
 276.233
 7.325
 0.002875 **

 Residuals
 27
 1018.20
 37.711

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Step4 Interpret the result

p-value is less than 0.05. Therefore, we reject the H₀ and there is exist a difference among coffee A, coffee B and coffee C.

Think

We now learn that there is a difference. However, is it between A and B, A and C, B and C or ALL?

>TukeyHSD(aov(coffee3\$Score~coffee3\$CoffeeType))

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = coffee3\$Score ~ coffee3\$CoffeeType)

\$`coffee3\$CoffeeType`

difflwruprp adjB-A 10.23.39074917.00925120.0026149C-A2.9-3.9092519.70925120.5489356C-B-7.3-14.109251-0.49074880.0337845

Paired-data

If the data is paired, we use conduct the analysis as follows: (based on the coffee4 data)

> TukeyHSD(aov(coffee4\$Score~coffee4\$CoffeeType+coffee4\$No))

2. Testing correlation

<data>

> a=c(5,6,10,8,9,2) > b=c(4,6,8,6,8,3)

- > plot(b~a)
- > abline(lm(b~a))

Step1 set up H₀ and H₁

 H_0 : There is no correlation between a and b. H_1 : There is a correlation between a and b.

Step2 determine the significance level This time, let's set p < .05

Step3 Conduct an analysis
We use cor.test (correlation test) function.
> cor.test(a,b)

Pearson's product-moment correlation

data: a and b t = 6.3704, df = 4, p-value = 0.003114

alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.6314654 0.9951235

sample estimates:

cor

0.9540843

Step4 Interpret the result

p-value is less than 0.05. Therefore, we reject the H_0 and there is a correlation between a and b.

3. Using statistics for your own analysis

(1) We conducted a questionnaire which consists of four answers in England and USA.

How many times have you been to abroad?

- a. never
- b. 1-5 times
- c. 5-10 times
- d. More than 10 times

We got the following data:

ans/country	England	USA	
а	25		24
b	30		34
с	18		20

Can we say that there is a difference between England and USA? $\left[p<.05\right]$

 H_0 :

 H_1 :

used function:

p value:

conclusion:

(2) Tests were conducted with respect to aspiration sensitivity among Chinese, Japanese and Korean. The scores are as follows:

Subject	Country	Score
sub1	Chinese	540
sub2	Chinese	450
sub3	Chinese	600

...

The higher the score of the test, the more sensitive the subject is to the sound of aspiration. Are there any differences among them? If yes, where is the difference? [p < .05]

H₀: H₁: used function: p value: conclusion: (3) We conducted two tests as to the pronunciations of vowels and consonants of English learners. The score is judged by a native speaker of English (/100). The results are following:

Subject	Vowel	Consonant
А	80	95
В	54	60
С	75	81
D	60	55

Can we say that the scores of these two have some relationship? [p < .05]

H₀:

H₁:

used function:

p value:

conclusion:

(4) A teacher wanted to know how effective the new method of teaching is. So he conducted a pre-word test for his students and also post-test after his lecture. Can we say that his new method is effective enough? [p < .05]

Student	Pre	Post
А	7	9
В	4	5
С	11	10
D	12	. 17

•••

H₀: H₁: used function:

p value:

conclusion: